24,505 research outputs found

    Singular Schrodinger operators in one dimension

    Get PDF
    We consider a class of singular Schr\"odinger operators HH that act in L2(0,∞)L^2(0,\infty), each of which is constructed from a positive function ϕ\phi on (0,∞)(0,\infty). Our analysis is direct and elementary. In particular it does not mention the potential directly or make any assumptions about the magnitudes of the first derivatives or the existence of second derivatives of ϕ\phi. For a large class of HH that have discrete spectrum, we prove that the eigenvalue asymptotics of HH does not depend on rapid oscillations of ϕ\phi or of the potential. Similar comments apply to our treatment of the existence and completeness of the wave operators.Comment: 23 page

    Effects of Unstable Dark Matter on Large-Scale Structure and Constraints from Future Surveys

    Full text link
    In this paper we explore the effect of decaying dark matter (DDM) on large-scale structure and possible constraints from galaxy imaging surveys. DDM models have been studied, in part, as a way to address apparent discrepancies between the predictions of standard cold dark matter models and observations of galactic structure. Our study is aimed at developing independent constraints on these models. In such models, DDM decays into a less massive, stable dark matter (SDM) particle and a significantly lighter particle. The small mass splitting between the parent DDM and the daughter SDM provides the SDM with a recoil or "kick" velocity vk, inducing a free-streaming suppression of matter fluctuations. This suppression may be probed via weak lensing power spectra measured by a number of forthcoming imaging surveys that aim primarily to constrain dark energy. Using scales on which linear perturbation theory alone is valid (multipoles < 300), surveys like Euclid or LSST can be sensitive to vk > 90 km/s for lifetimes ~ 1-5 Gyr. To estimate more aggressive constraints, we model nonlinear corrections to lensing power using a simple halo evolution model that is in good agreement with numerical simulations. In our most ambitious forecasts, using multipoles < 3000, we find that imaging surveys can be sensitive to vk ~ 10 km/s for lifetimes < 10 Gyr. Lensing will provide a particularly interesting complement to existing constraints in that they will probe the long lifetime regime far better than contemporary techniques. A caveat to these ambitious forecasts is that the evolution of perturbations on nonlinear scales will need to be well calibrated by numerical simulations before they can be realized. This work motivates the pursuit of such a numerical simulation campaign to constrain dark matter with cosmological weak lensing.Comment: 15 pages, 7 figures. Submitted to PR

    Viscous dark fluid universe

    Full text link
    We investigate the cosmological perturbation dynamics for a universe consisting of pressureless baryonic matter and a viscous fluid, the latter representing a unified model of the dark sector. In the homogeneous and isotropic background the \textit{total} energy density of this mixture behaves as a generalized Chaplygin gas. The perturbations of this energy density are intrinsically non-adiabatic and source relative entropy perturbations. The resulting baryonic matter power spectrum is shown to be compatible with the 2dFGRS and SDSS (DR7) data. A joint statistical analysis, using also Hubble-function and supernovae Ia data, shows that, different from other studies, there exists a maximum in the probability distribution for a negative present value q0≈−0.53q_0 \approx - 0.53 of the deceleration parameter. Moreover, while previous descriptions on the basis of generalized Chaplygin gas models were incompatible with the matter power spectrum data since they required a much too large amount of pressureless matter, the unified model presented here favors a matter content that is of the order of the baryonic matter abundance suggested by big-bang nucleosynthesis.Comment: 19 pages, 6 figure

    Solid immersion lens applications for nanophotonic devices

    Get PDF
    Solid immersion lens (SIL) microscopy combines the advantages of conventional microscopy with those of near-field techniques, and is being increasingly adopted across a diverse range of technologies and applications. A comprehensive overview of the state-of-the-art in this rapidly expanding subject is therefore increasingly relevant. Important benefits are enabled by SIL-focusing, including an improved lateral and axial spatial profiling resolution when a SIL is used in laser-scanning microscopy or excitation, and an improved collection efficiency when a SIL is used in a light-collection mode, for example in fluorescence micro-spectroscopy. These advantages arise from the increase in numerical aperture (NA) that is provided by a SIL. Other SIL-enhanced improvements, for example spherical-aberration-free sub-surface imaging, are a fundamental consequence of the aplanatic imaging condition that results from the spherical geometry of the SIL. Beginning with an introduction to the theory of SIL imaging, the unique properties of SILs are exposed to provide advantages in applications involving the interrogation of photonic and electronic nanostructures. Such applications range from the sub-surface examination of the complex three-dimensional microstructures fabricated in silicon integrated circuits, to quantum photoluminescence and transmission measurements in semiconductor quantum dot nanostructures

    Non-parametric comparison of histogrammed two-dimensional data distributions using the Energy Test

    Get PDF
    When monitoring complex experiments, comparison is often made between regularly acquired histograms of data and reference histograms which represent the ideal state of the equipment. With the larger HEP experiments now ramping up, there is a need for automation of this task since the volume of comparisons could overwhelm human operators. However, the two-dimensional histogram comparison tools available in ROOT have been noted in the past to exhibit shortcomings. We discuss a newer comparison test for two-dimensional histograms, based on the Energy Test of Aslan and Zech, which provides more conclusive discrimination between histograms of data coming from different distributions than methods provided in a recent ROOT release.The Science and Technology Facilities Council, U

    Developing and Researching PhET simulations for Teaching Quantum Mechanics

    Get PDF
    Quantum mechanics is difficult to learn because it is counterintuitive, hard to visualize, mathematically challenging, and abstract. The Physics Education Technology (PhET) Project, known for its interactive computer simulations for teaching and learning physics, now includes 18 simulations on quantum mechanics designed to improve learning of this difficult subject. Our simulations include several key features to help students build mental models and intuitions about quantum mechanics: visual representations of abstract concepts and microscopic processes that cannot be directly observed, interactive environments that directly couple students' actions to animations, connections to everyday life, and efficient calculations so students can focus on the concepts rather than the math. Like all PhET simulations, these are developed using the results of education research and feedback from educators, and are tested in student interviews and classroom studies. This article provides an overview of the PhET quantum simulations and their development. We also describe research demonstrating their effectiveness and share some insights about student thinking that we have gained from our research on quantum simulations.Comment: accepted by American Journal of Physics; v2 includes an additional study, more explanation of research behind claims, clearer wording, and more reference

    A Study of Educational Simulations Part I - Engagement and Learning

    Get PDF
    Interactive computer simulations with complex representations and sophisticated graphics are a relatively new addition to the classroom, and research in this area is limited. We have conducted over 200 individual student interviews during which the students described what they were thinking as they interacted with simulations. These interviews were conducted as part of the research and design of simulations for the Physics Education Technology (PhET) project. PhET is an ongoing project that has developed over 60 simulations for use in teaching physics, chemistry, and physical science. These interviews are a rich source of information about how students interact with computer simulations and what makes an educationally effective simulation. We have observed that simulations can be highly engaging and educationally effective, but only if the student's interaction with the simulation is directed by the student's own questioning. Here we describe our design process, what features are effective for engaging students in educationally productive interactions and the underlying principles which support our empirically developed guidelines. In a companion paper we describe in detail the design features used to create an intuitive simulation for students to use

    Beyond the Marrakesh VIP Treaty: Typology of copyright access-enabling provisions for persons with disabilities

    Get PDF
    This paper builds upon the evidence drawn from a scoping study on access to copyright works by persons with disabilities. It identifies and discusses specific access‐enabling technologies for persons with aural, cognitive, physical, and visual disabilities and how they are affected by the exercise of exclusive rights. It shows how, and the extent to which states\u27 ratification of the Marrakesh Treaty to Facilitate Access to Published Works for Persons Who Are Blind, Visually Impaired, or Otherwise Print Disabled (Marrakesh Treaty) has enabled the making of accessible format of copyright works for persons with disabilities. To this end, the paper examines patterns and trends of accessible format enabling provisions in the copyright laws of World Intellectual Property Organization (WIPO) member states

    A photometric study of the young open cluster NGC 1220

    Get PDF
    We present UBV CCD observations obtained in the field of the northern open cluster NGC 1220, for which little information is available. We provide also BV CCD photometry of a field 5â€Č^{\prime} northward of NGC 1220 to take into account field star contamination. We argue that NGC 1220 is a young compact open cluster, for which we estimate a core radius in the range 1.5−2.01.5-2.0 arcmin. We identify 26 likely candidate members with spectral type earlier than A5A5, down to VoV_o=15.00 mag on the basis of the position in the two-colour Diagram and in the Colour Magnitude Diagrams (CMDs). By analyzing the distribution of these stars in the colour-colour and CMDs, we find that NGC 1220 has a reddening E(B−V)=0.70±0.15(B-V)=0.70\pm0.15 mag, is placed 1800±2001800\pm200 pc distant from the Sun, and has an age of about 60 Myrs. The cluster turns out to be located about 120 pc above the Galactic plane, relatively high with respect to its age.Comment: 7 pages, 8 eps figures, accepted for publication in A&
    • 

    corecore